

States SHARE OF AI JOBS

As % Al Jobs for US Total for Jan-Dec 2023

Rank	State	Share (%)
1	CA	19.03%
2	TX	8.52%
3	VA	7.99%
4	NY	7.44%
5	MA	5.39%
6	WA	4.97%
7	IL	3.76%
8	FL	3.47%
9	PA	3.32%
10	NJ	3.12%
11	GA	3.15%
12	MD	2.97%
13	NC	2.88%
14	ОН	2.31%
15	СО	2.06%
16	MI	1.81%
17	DC	1.66%
18	MN	1.65%
19	AZ	1.46%
20	СТ	1.15%
21	MO	1.11%
22	TN	0.98%
23	IN	0.87%
24	UT	0.81%
25	OR	0.82%
26	AL	0.75%

Rank	State	Share (%)
27	WI	0.65%
28	AR	0.65%
29	SC	0.43%
30	NV	0.40%
31	IA	0.39%
32	KY	0.39%
33	LA	0.37%
34	DE	0.36%
35	OK	0.32%
36	NE	0.30%
37	RI	0.29%
38	KS	0.28%
39	NM	0.26%
40	ID	0.23%
41	HI	0.21%
42	NH	0.18%
43	MS	0.16%
44	WV	0.14%
45	ME	0.13%
46	MT	0.12%
47	VT	0.09%
48	SD	0.08%
49	ND	0.07%
50	WY	0.03%
51	AK	0.03%

U.S. Total, Monthly Average = 10, 254

Methodology

The term "AI Job" refers to a job posting that requires AI skills. We use a fine-tuned large language model (LLM), powered by cutting-edge AI technologies, to differentiate jobs requiring AI skills from others. When compared against manual checks by multiple AI researchers, this LLM approach has an accuracy above 90%. In contrast, a keywords-dictionary based approach has a < 50% accuracy-level when compared against manual checks. We exclude jobs that would be based outside the U.S.

<u>Tea</u>m

*Dr. Anil Gupta, Professor: agupta@umd.edu
*Jon Norberg, CSO: jon.norberg@linkup.com

Dr. Evan Schnidman, CEO: evan@outrigger.com

*Project Co-Leads

Dr. Siva Viswanathan, Professor: sviswan1@umd.edu
Dr. Kunpeng Zhang, Professor: kpzhang@umd.edu
Hanwen Shi, PhD Student: hwshi@umd.edu